545 research outputs found

    Changes in structural network topology correlate with severity of hallucinatory behavior in Parkinson's disease

    Get PDF
    Inefficient integration between bottom-up visual input and higher order visual processing regions is implicated in visual hallucinations in Parkinson's disease (PD). Here, we investigated white matter contributions to this perceptual imbalance hypothesis. Twenty-nine PD patients were assessed for hallucinatory behavior. Hallucination severity was correlated to connectivity strength of the network using the network-based statistic approach. The results showed that hallucination severity was associated with reduced connectivity within a subnetwork that included the majority of the diverse club. This network showed overall greater between-module scores compared with nodes not associated with hallucination severity. Reduced between-module connectivity in the lateral occipital cortex, insula, and pars orbitalis and decreased within-module connectivity in the prefrontal, somatosensory, and primary visual cortices were associated with hallucination severity. Conversely, hallucination severity was associated with increased between- and within-module connectivity in the orbitofrontal and temporal cortex, as well as regions comprising the dorsal attentional and default mode network. These results suggest that hallucination severity is associated with marked alterations in structural network topology with changes in participation along the perceptual hierarchy. This may result in the inefficient transfer of information that gives rise to hallucinations in PD. Author SummaryInefficient integration of information between external stimuli and internal perceptual predictions may lead to misperceptions or visual hallucinations in Parkinson's disease (PD). In this study, we show that hallucinatory behavior in PD patients is associated with marked alterations in structural network topology. Severity of hallucinatory behavior was associated with decreased connectivity in a large subnetwork that included the majority of the diverse club, nodes with a high number of between-module connections. Furthermore, changes in between-module connectivity were found across brain regions involved in visual processing, top-down prediction centers, and endogenous attention, including the occipital, orbitofrontal, and posterior cingulate cortex. Together, these findings suggest that impaired integration across different sides across different perceptual processing regions may result in inefficient transfer of information

    Cerebellar atrophy in Parkinson's disease and its implication for network connectivity.

    Get PDF
    Pathophysiological and atrophic changes in the cerebellum are documented in Parkinson's disease. Without compensatory activity, such abnormalities could potentially have more widespread effects on both motor and non-motor symptoms. We examined how atrophic change in the cerebellum impacts functional connectivity patterns within the cerebellum and between cerebellar-cortical networks in 42 patients with Parkinson's disease and 29 control subjects. Voxel-based morphometry confirmed grey matter loss across the motor and cognitive cerebellar territories in the patient cohort. The extent of cerebellar atrophy correlated with decreased resting-state connectivity between the cerebellum and large-scale cortical networks, including the sensorimotor, dorsal attention and default networks, but with increased connectivity between the cerebellum and frontoparietal networks. The severity of patients' motor impairment was predicted by a combination of cerebellar atrophy and decreased cerebellar-sensorimotor connectivity. These findings demonstrate that cerebellar atrophy is related to both increases and decreases in cerebellar-cortical connectivity in Parkinson's disease, identifying potential cerebellar driven functional changes associated with sensorimotor deficits. A post hoc analysis exploring the effect of atrophy in the subthalamic nucleus, a cerebellar input source, confirmed that a significant negative relationship between grey matter volume and intrinsic cerebellar connectivity seen in controls was absent in the patients. This suggests that the modulatory relationship of the subthalamic nucleus on intracerebellar connectivity is lost in Parkinson's disease, which may contribute to pathological activation within the cerebellum. The results confirm significant changes in cerebellar network activity in Parkinson's disease and reveal that such changes occur in association with atrophy of the cerebellum

    Research diagnostic criteria for mild cognitive impairment with Lewy bodies: A systematic review and meta-analysis.

    Get PDF
    INTRODUCTION Operationalized research criteria for mild cognitive impairment with Lewy bodies (MCI-LB) were published in 2020. The aim of this systematic review and meta-analysis was to review the evidence for the diagnostic clinical features and biomarkers in MCI-LB set out in the criteria. METHODS MEDLINE, PubMed, and Embase were searched on 9/28/22 for relevant articles. Articles were included if they presented original data reporting the rates of diagnostic features in MCI-LB. RESULTS Fifty-seven articles were included. The meta-analysis supported the inclusion of the current clinical features in the diagnostic criteria. Evidence for striatal dopaminergic imaging and meta-iodobenzylguanidine cardiac scintigraphy, though limited, supports their inclusion. Quantitative electroencephalogram (EEG) and fluorodeoxyglucose positron emission tomography (PET) show promise as diagnostic biomarkers. DISCUSSION The available evidence largely supports the current diagnostic criteria for MCI-LB. Further evidence will help refine the diagnostic criteria and understand how best to apply them in clinical practice and research. HIGHLIGHTS A meta-analysis of the diagnostic features of MCI-LB was carried out. The four core clinical features were more common in MCI-LB than MCI-AD/stable MCI. Neuropsychiatric and autonomic features were also more common in MCI-LB. More evidence is needed for the proposed biomarkers. FDG-PET and quantitative EEG show promise as diagnostic biomarkers in MCI-LB

    Cognitive training for freezing of gait in Parkinson's disease: a randomized controlled trial.

    Get PDF
    The pathophysiological mechanism of freezing of gait (FoG) has been linked to executive dysfunction. Cognitive training (CT) is a non-pharmacological intervention which has been shown to improve executive functioning in Parkinson's disease (PD). This study aimed to explore whether targeted CT can reduce the severity of FoG in PD. Patients with PD who self-reported FoG and were free from dementia were randomly allocated to receive either a CT intervention or an active control. Both groups were clinician-facilitated and conducted twice-weekly for seven weeks. The primary outcome was percentage of time spent frozen during a Timed Up and Go task, assessed both on and off dopaminergic medications. Secondary outcomes included multiple neuropsychological and psychosocial measures. A full analysis was first conducted on all participants randomized, followed by a sample of interest including only those who had objective FoG at baseline, and completed the intervention. Sixty-five patients were randomized into the study. The sample of interest included 20 in the CT group and 18 in the active control group. The primary outcome of percentage time spent frozen during a gait task was significantly improved in the CT group compared to active controls in the on-state. There were no differences in the off-state. Patients who received CT also demonstrated improved processing speed and reduced daytime sleepiness compared to those in the active control. The findings suggest that CT can reduce the severity of FoG in the on-state, however replication in a larger sample is required

    Clinical outcome measures in dementia with Lewy bodies trials: critique and recommendations

    Get PDF
    The selection of appropriate outcome measures is fundamental to the design of any successful clinical trial. Although dementia with Lewy bodies (DLB) is one of the most common neurodegenerative conditions, assessment of therapeutic benefit in clinical trials often relies on tools developed for other conditions, such as Alzheimer's or Parkinson's disease. These may not be sufficiently valid or sensitive to treatment changes in DLB, decreasing their utility. In this review, we discuss the limitations and strengths of selected available tools used to measure DLB-associated outcomes in clinical trials and highlight the potential roles for more specific objective measures. We emphasize that the existing outcome measures require validation in the DLB population and that DLB-specific outcomes need to be developed. Finally, we highlight how the selection of outcome measures may vary between symptomatic and disease-modifying therapy trials

    Understanding visual hallucinations: a new synthesis.

    Get PDF
    Despite decades of research, we do not definitively know how people sometimes see things that are not there. Eight models of complex visual hallucinations have been published since 2000, including Deafferentation, Reality Monitoring, Perception and Attention Deficit, Activation, Input, and Modulation, Hodological, Attentional Networks, Active inference, and Thalamocortical Dysrhythmia Default Mode Network Decoupling. Each was derived from different understandings of brain organisation. To reduce this variability, representatives from each research group agreed an integrated Visual Hallucination Framework that is consistent with current theories of veridical and hallucinatory vision. The Framework delineates cognitive systems relevant to hallucinations. It allows a systematic, consistent, investigation of relationships between the phenomenology of visual hallucinations and changes in underpinning cognitive structures. The episodic nature of hallucinations highlights separate factors associated with the onset, persistence, and end of specific hallucinations suggesting a complex relationship between state and trait markers of hallucination risk. In addition to a harmonised interpretation of existing evidence, the Framework highlights new avenues of research, and potentially, new approaches to treating distressing hallucinations

    The mir-51 Family of microRNAs Functions in Diverse Regulatory Pathways in Caenorhabditis elegans

    Get PDF
    The mir-51 family of microRNAs (miRNAs) in C. elegans are part of the deeply conserved miR-99/100 family. While loss of all six family members (mir-51-56) in C. elegans results in embryonic lethality, loss of individual mir-51 family members results in a suppression of retarded developmental timing defects associated with the loss of alg-1. The mechanism of this suppression of developmental timing defects is unknown. To address this, we characterized the function of the mir-51 family in the developmental timing pathway. We performed genetic analysis and determined that mir-51 family members regulate the developmental timing pathway in the L2 stage upstream of hbl-1. Loss of the mir-51 family member, mir-52, suppressed retarded developmental timing defects associated with the loss of let-7 family members and lin-46. Enhancement of precocious defects was observed for mutations in lin-14, hbl-1, and mir-48(ve33), but not later acting developmental timing genes. Interestingly, mir-51 family members showed genetic interactions with additional miRNA-regulated pathways, which are regulated by the let-7 and mir-35 family miRNAs, lsy-6, miR-240/786, and miR-1. Loss of mir-52 likely does not suppress miRNA-regulated pathways through an increase in miRNA biogenesis or miRNA activity. We found no increase in the levels of four mature miRNAs, let-7, miR-58, miR-62 or miR-244, in mir-52 or mir-52/53/54/55/56 mutant worms. In addition, we observed no increase in the activity of ectopic lsy-6 in the repression of a downstream target in uterine cells in worms that lack mir-52. We propose that the mir-51 family functions broadly through the regulation of multiple targets, which have not yet been identified, in diverse regulatory pathways in C. elegans

    Precipitation is the main axis of tropical plant phylogenetic turnover across space and time.

    Get PDF
    This is the final version. Available from the American Association for the Advancement of Science via the DOI in this record. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. All phylogenies, both occurrence datasets, and the taxonomic checklist are available as data S1 on Zenodo (https://doi.org/10.5281/zenodo.7568716). GenBank or European Nucleotide Archive accession codes for new genetic sequences generated here are listed in tables S1 and S4 to S10.Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.Natural Environment Research Council (NERC)Swiss National Science Foundation (SNSF)Swiss National Science Foundation (SNSF)Swiss National Science Foundation (SNSF)Claraz Schenkung Foundation, SwitzerlandU.S. National Science FoundationU.S. National Science FoundationNatural Sciences and Engineering Research Council of Canada (NSERC)Biotechnology and Biological Sciences Research CouncilFAPESB, BrazilFAPESB, BrazilFAPESB, BrazilCNPq, BrazilCNPq, BrazilCNPq, BrazilCNPq, BrazilConsejo Nacional de Investigaciones Científicas y Técnicas (CONICET), ArgentinaAgencia Nacional de Promoción Científica y Tecnológica (ANPCyT), ArgentinaInstituto Nacional de Tecnología Agropecuaria (INTA), ArgentinaInstituto Nacional de Tecnología Agropecuaria (INTA), ArgentinaUniversidad de Morón, ArgentinaCoordination for the Improvement of Higher Education Personnel (CAPES), BrazilEmbrapa Recursos Genéticos e Biotecnologia (CENARGEN), Brazi

    Chromosomal organization at the level of gene complexes

    Get PDF
    Metazoan genomes primarily consist of non-coding DNA in comparison to coding regions. Non-coding fraction of the genome contains cis-regulatory elements, which ensure that the genetic code is read properly at the right time and space during development. Regulatory elements and their target genes define functional landscapes within the genome, and some developmentally important genes evolve by keeping the genes involved in specification of common organs/tissues in clusters and are termed gene complex. The clustering of genes involved in a common function may help in robust spatio-temporal gene expression. Gene complexes are often found to be evolutionarily conserved, and the classic example is the hox complex. The evolutionary constraints seen among gene complexes provide an ideal model system to understand cis and trans-regulation of gene function. This review will discuss the various characteristics of gene regulatory modules found within gene complexes and how they can be characterized

    Holoprosencephaly

    Get PDF
    Holoprosencephaly (HPE) is a complex brain malformation resulting from incomplete cleavage of the prosencephalon, occurring between the 18th and the 28th day of gestation and affecting both the forebrain and the face. It is estimated to occur in 1/16,000 live births and 1/250 conceptuses. Three ranges of increasing severity are described: lobar, semi-lobar and alobar HPE. Another milder subtype of HPE called middle interhemispheric variant (MIHF) or syntelencephaly is also reported. In most of the cases, facial anomalies are observed in HPE, like cyclopia, proboscis, median or bilateral cleft lip/palate in severe forms, ocular hypotelorism or solitary median maxillary central incisor in minor forms. These latter midline defects can occur without the cerebral malformations and then are called microforms. Children with HPE have many medical problems: developmental delay and feeding difficulties, epilepsy, instability of temperature, heart rate and respiration. Endocrine disorders like diabetes insipidus, adrenal hypoplasia, hypogonadism, thyroid hypoplasia and growth hormone deficiency are frequent. To date, seven genes have been positively implicated in HPE: Sonic hedgehog (SHH), ZIC2, SIX3, TGIF, PTCH, GLI2 and TDGF1. A molecular diagnosis can be performed by gene sequencing and allele quantification for the four main genes SHH, ZIC2, SIX3 and TGIF. Major rearrangements of the subtelomeres can also be identified by multiplex ligation-dependent probe amplification (MLPA). Nevertheless, in about 70% of cases, the molecular basis of the disease remains unknown, suggesting the existence of several other candidate genes or environmental factors. Consequently, a "multiple-hit hypothesis" of genetic and/or environmental factors (like maternal diabetes) has been proposed to account for the extreme clinical variability. In a practical approach, prenatal diagnosis is based on ultrasound and magnetic resonance imaging (MRI) rather than on molecular diagnosis. Treatment is symptomatic and supportive, and requires a multidisciplinary management. Child outcome depends on the HPE severity and the medical and neurological complications associated. Severely affected children have a very poor prognosis. Mildly affected children may exhibit few symptoms and may live a normal life
    corecore